An Experimental Study to Improve Solar Heating Water Using PCM and Integrated with Helical Heat Exchanger

Pages:   72 - 79

    |    

  View PDF

    |    

  Download PDF

Participants:

  Fahad S. Fahad   |      Ibrahim Koc   |   
doi: https://doi.org/10.33971/bjes.22.2.11

Summary:

Solar energy can only be used when it's sunny outside. Therefore, solar heating is only efficient during the day and decreases at night or on overcast days. Consumer energy needs have a distinct seasonal structure, and solar energy cannot completely meet those needs. In order to satisfy customer demand, energy storage is essential. In order to maximize the use of solar energy and to increase the energy and efficiency of the solar absorption system, superior thermal properties of sophisticated materials, such as phase change materials, are important [1]. In the current study, 20 kg of phase change material (PCM) is integrated with solar water heating and fed into a storage tank to enhance the solar water heating efficiency. Helical coil heat exchangers were added to the storage tank as an external load. The trials were conducted in four separate months (September 2021, April, May, and June 2022) that were chosen on the first day. The effectiveness, heat gain, and significance of the phase change material in increasing heating efficiency throughout the day were studied using a range of variables, including water volume flow rate (2, 3, 4, 6, and 8 L/min) and inlet water temperature (25, 30, and 35 °C). The results showed that, given an initial temperature of 25 °C, the daily efficiency range, was 0.58 to 0.65, and that the daily final outlet temperature was enhanced outlet temperature over 65 °C. Additionally, on all test days, the heat released by the phase change material was audible in the evening and increased the utilization time.