Mechanical Vibration Reduction of a Nonlinear Half-Car Model using Integral-Proportional Derivative (I-PD) Controller

Pages:   34 - 42

    |    

  View PDF

    |    

  Download PDF

Participants:

  Mustafa Mohammed Matrood   |      Ameen Ahmed Nassar   |   
doi: https://doi.org/10.33971/bjes.24.2.5

Summary:

Vehicles usually consist of several essential systems. The performance of the vehicle is evaluated through the efficiency of these systems to perform their duties. The suspension system is one of these systems dedicated to absorbing shocks arising from vehicles passing over road bumps, thus reducing vibrations and achieving passenger comfort while driving. This paper presents a study on enhancing ride comfort in a nonlinear half-car model using a modified Proportional-Integral-Derivative (PID) controller. In this study a half-car model is developed considering the nonlinearities in the suspension system components. A nonlinear half-car model was adopted to increase accuracy and make the overall system closer to reality. Instead of the feed-forward conventional PID controller gains, the proposed controller gains are formed by putting the proportional and derivative gains in the feedback path while keeping the integral gain in the feed-forward path to act as an I-PD controller. The proposed controller is integrated into the model to deal with these nonlinearities effectively and to achieve the optimal performance of the vehicle body. The overall system has been developed and simulated in the Matlab Simulink environment to show the dynamic response. Simulation results demonstrate the effectiveness of the I-PD controller in improving the ride comfort and handling stability of the nonlinear half-car model by reducing body acceleration and suspension deflection. A comparison with other study has been conducted to verify the effectiveness of the proposed controller.