Vibration Signal Analysis Under Varying Machine Speed Using Spectral Correlation

Pages:   50 - 61

    |    

  View PDF

    |    

  Download PDF

Participants:

  Mohanad M. Matrood   |      Jaafar K. Alsalaet   |   
doi: https://doi.org/10.33971/bjes.24.2.7

Summary:

Monitoring the health of rotating machinery is essential to ensure system safety, achieve cost savings, and enhance overall reliability. The requirement for a reliable and clear method of identifying defects has prompted the development of several monitoring techniques. They utilize vibration, measurement of the motor's current signature, and acoustic emission data in the process of condition monitoring. The MFS (machinery fault simulator) equipment was used to determine bearing faults using vibration signal analysis. MFS conducts simulations and investigations of many bearing issues, including those occurring in the inner race, outer race, and balls. An accelerometer (type B & K 4366) was connected to a data acquisition device (IDAC-6C) to record vibration signals under different operating conditions. Furthermore, a tachometer equipped with an LCD display is employed to measure the rotational speed. Four types of defects in ball bearing (Koyo 1205C3 type) were studied, the slot in outer race with size 0.196 mm, the slot in inner race with size 0.191 mm, in ball with size 0.196 mm in additional to compound defect. In this paper, spectral correlation technique was employed to detect defects in ball bearings running at varying speed, along with spectral coherence and the corresponding Enhanced Envelope Spectrum (EES) in frequency-order domain and order-order domain. The results show that the adopted methods, that are used to analyze the real vibration signals for diagnosis the defected ball bearings, are suitable, accurate and less processing time for varying speed. The processing time of the FastACP method used to analyze the signals in order- order domain is less than that of the adopted method in the frequency-order domain for any defect type. Overall, using the FastACP method in the order-order domain significantly reduced processing time by approximately 27% compared to the adopted method in the frequency-order domain under varying speed conditions.